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Abstract

Through laboratory measurements, we compared the rotation of spherical and ellipsoidal particles in

homogeneous, isotropic turbulence. We found that the particles’ angular velocity statistics are well

described by an Ornstein – Uhlenbeck (OU) process. This theoretical model predicts that the Lagrangian

autocovariance of particles’ angular velocity will decay exponentially. We measured the autocovariance

by using stereoscopic particle image velocimetry (SPIV) applied to spherical and ellipsoidal particles

whose size was within the inertial subrange of the ambient turbulence. SPIV resolves the motion of points

interior to the particles, from which we calculated the solid body rotation of the particles. This provided us

with the angular velocity time series for individual particles. Through ensemble statistics, we determined

the autocovariance of angular velocity and confirmed that it matches the form predicted by an OU

process. We found that in this stochastic framework the autocovariances of both the ellipsoids and

spheres are statistically identical, suggesting that rotation is controlled by the large scales of turbulence.

We can further use the autocovariance curve to quantify the turbulent rotational diffusivity and discuss

its implications for the transport of aquatic organisms in natural turbulence.

Keywords: particle-laden flows, homogeneous turbulence, isotropic turbulence, multiphase flows,

biological fluid dynamics

Introduction

[1] Rotation is a fundamental characteristic of

the kinematics of ecologically relevant particles,

notably plankton and aggregates (e.g., marine

snow). Rotation impacts the behavior of indi-

vidual particles through its effects on drag

(Clift et al. 2005; Mortensen et al. 2008b), as

well as navigation and perception. For example,

rotation may interfere with gravitaxis and di-

rected swimming of plankton (Machemer and

Bräucker 1992; Roberts and Deacon 2002).

Two-particle interactions, such as collision and

avoidance, are dependent on rotation and

orientation (Koch and Shaqfeh 1989). Rotation

may also interfere with the mechanoperception

of prey by copepods and larvae, in some cases

preventing prey capture (Yamazaki and Squires

1996; Visser 2001). The behavior of entire

particle communities may also be affected by

rotation, for example, by controlling preferen-

tial alignment. Particle alignment can be due

to settling or shear (Roberts and Deacon

2002; Reidenbach et al. 2009); rotational

diffusion acts as a competing mechanism that

works against alignment. The interplay among

these mechanisms can cause unique visual

signatures as the alignment evolves, due to

alignment’s effects on the optical properties of

a suspension. Because plankton and aggregates

are typically nonspherical, it is necessary to

consider the effect of shape on their rotation.

This study compares rotational dynamics of

spherical and nonspherical particles suspended

in a turbulent flow.

Limnology and Oceanography: Fluids and Environments † 3 (2013): 89–102 † DOI 10.1215/21573689-2326592

q 2013 by the Association for the Sciences of Limnology and Oceanography, Inc.

Department of Civil and

Environmental Engineering,

University of California,

Berkeley, California 94720, USA

Correspondence to

Colin R. Meyer,

colinrmeyer@gmail.com

Downloaded at UNIV CA- BERKELEY LIBRARY on September 3, 2013



[2] For both spherical and nonspherical par-

ticles, rotation significantly affects the wake structure

behind a particle and thus the forces coupling the

particle and surrounding fluid (Batchelor 1967;

Giacobello et al. 2009). These forces, in turn, set the

particle rotation rate by causing angular acceleration

(Bagchi and Balachandar 2002; Shin and Koch 2005).

This feedback can lead to complex behaviors, includ-

ing broken symmetry in quiescent fluid (Jenny et al.

2004), rotation in a direction opposite to local vortic-

ity during the transient approach to equilibrium in a

steady shear flow (Bagchi and Balachandar 2002), and

spherical particles that do not rotate at half the local

fluid vorticity in turbulent flow (Mortensen et al.

2007, 2008a). Recent work by Bellani et al. (2012)

has shown that the addition of spherical and ellipsoi-

dal particles into homogeneous turbulence changes the

spectral slope of the fluid-phase turbulence. Further-

more, Eulerian rotation statistics of the spherical and

ellipsoidal particles are quite different from the fluid

enstrophy (Bellani et al. 2012).

[3] Complex feedbacks between particles and tur-

bulence become particularly interesting when particles

are larger than the local minimum scale of shear, for

example, the Kolmogorov length scale. In such cases, the

particle experiences nonlinear shear and directly influ-

ences the turbulent field simply by taking up space.

Aquatic organisms that are typically within this size

range are the nektoplankton—organisms with intermit-

tent control over their direction and orientation, such as

fish larvae. Such animals, having length scales within

the inertial subrange of ambient turbulence, are sub-

jected to eddies both larger and smaller than themselves.

Many organisms at this size scale have evolved physical

adaptations (as manifested in fin and body shape) to

better control and stabilize their position in the flow

(Webb and Cotel 2010). Local rotation (about the

body axes of the animal; i.e., yaw, pitch, and roll) is

important for navigation and stabilization. However,

global rotation matters as well. For example, Tritico

and Cotel (2010) showed that loss of postural control

is greatly increased when fish swim through horizontally

oriented eddies compared with vertically oriented

eddies. Excessive rotation can also disorient organisms

with respect to gravity, subjecting them to increased

predation (Čada 1997).

[4] Key questions for predicting particle motions

are how turbulence and particle shape interact to set the

magnitude of particle rotation, and how long an angular

velocity value tends to persist. This value will be deter-

mined by the interaction of a particle with the turbulent

flow, and for large particles the interaction cannot be

calculated with Stokes’s or Jefferey’s (1922) formulas.

This “persistence” or “correlation” timescale of particle

angular velocities is an important input when modeling

particle motion as a stochastic process (Naso and Pros-

peretti 2010). This can be useful when specifying a sto-

chastic drag model (Rybalko et al. 2012). It can also be

used when studying particle orientation dynamics (e.g.,

Durham et al. 2009).

[5] The stochastic description of particle rotation

may take any number of forms, but the most convenient

is a diffusion process. This is the commonly used para-

digm in mass transport, and Eulerian models for scalar

diffusion in shear flows have been studied extensively

(Richardson 1926; Taylor 1953). Many environmental

transport processes can be modeled as random walks,

and stochastic processes are a formal method for work-

ing with random walks (Fischer et al. 1979). Of specific

interest here is the Ornstein–Uhlenbeck (OU) process, a

stochastic process that describes diffusion (Doob 1942).

Along with its corresponding stochastic differential

equation (the Langevin equation), the OU process can

be an effective model of diffusive mass transport in tur-

bulence (Pope 2000).

[6] In this study we examined the hypothesis that

the OU process can describe the angular velocity of

spherical and ellipsoidal particles in turbulent flow.

This approach allows the time-dependent evolution of

a particle’s orientation to be described as a random walk

in orientation space, as a function of the angular velocity

statistics. Rotational diffusion is analogous to transla-

tional diffusion, which describes the evolution of a

particle’s location as a function of turbulent velocity

statistics (Berg 1983). We tested this hypothesis by

measuring the Lagrangian autocovariance and prob-

ability density functions (PDFs) of particles’ angular

velocity and comparing these with the OU model.
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Methods

Analytical Model for Rotation

[7] An OU process is completely characterized by a

Gaussian distribution and an exponentially decaying

autocovariance, both of which are statistically stationary

(Doob 1942). The autocovariance of time series a(t) is

defined as RðtÞ ; kaðtÞaðt + tÞl, where t is time, t is a

time lag, and angle brackets denote expectation

values. For an OU process, R(t) is a negative exponen-

tial, that is, RðtÞ ¼ s2e-t=T , where s 2 is the variance

of the distribution of a (which is Gaussian), and

the characteristic time T is known as the integral

timescale. The OU process has been shown to accurately

describe the Lagrangian velocity of fluid parcels in tur-

bulent flow (Pope 2000). One important implication

of this is that the OU process can be used to accu-

rately model the turbulent diffusion of a cloud of

particles, giving the time-dependent eddy diffusivity, K

(Taylor 1922)

KðtÞ ¼

ðt
0

RðtÞdt: ð1Þ

This result can be used to apply Fick’s law for mass

flux in a turbulent flow (Fischer et al. 1979). The time

dependence of Eq. 1 is an extremely important feature

for biological studies. It allows the diffusion model to be

applied at times shorter than the asymptotic limit. Such

short-time processes can be crucial in questions of

collision and avoidance (Visser and Kiørboe 2006).

[8] We hypothesize that the OU process is also a

good model for the rotation of large (i.e., larger than the

Kolmogorov scale) particles suspended in a turbulent

flow. Specifically, we hypothesized that the Lagrangian

time series of angular velocities will follow an OU pro-

cess. We tested this hypothesis by examining two aspects

of the particle rotation statistics. First, we examined

whether the PDF of particles’ angular velocity is station-

ary and Gaussian. Second, we examined whether the

diagonal components of the Lagrangian angular velocity

autocovariance tensor, Rv, decay exponentially as

RWi
ðtÞ ¼ a2

i e
-t=TWi ; ð2Þ

where TWi
is the Lagrangian integral timescale of

angular velocity and a2
i is the variance of the angular

velocity. The autocovariance tensor can be uniquely

described by a single index because all of the off-

diagonal terms are zero: RWi
ðtÞ ¼ RWiWi

ðtÞ (without

summation; see Results). Hereafter we refer to Eq. 2 as

the autocovariance. The other statistics derived from the

autocovariance tensor follow the same convention.

Laboratory Experiment

[9] We examined particle motion in homogeneous, iso-

tropic turbulence generated in a laboratory facility con-

sisting of a symmetrically stirred rectangular turbulence

tank driven by a planar forcing element (64 synthetic

jets) on each end (Fig. 1). The symmetry contributes to

large-scale isotropy, as does the use of two randomly

actuated synthetic jet arrays (RASJAs) for the forcing

elements (Variano and Cowen 2008). The jets in each

RASJA fire in a stochastic pattern that maximizes the

shear production of turbulence, similar to an active-

grid wind tunnel but without mean flow. The RASJAs

allow the tank-scale secondary circulations to be essen-

tially eliminated, which increases the residence time of

particles in the test section helping us measure Lagran-

gian particle trajectories.

[10] The turbulence tank (80 cm vertical by 80 cm

lateral by 162 cm axial, where axial is the direction in

which the RASJA jets inject momentum) had two

screens to prevent particles from interacting with

the pumps; these screens defined a central region

80 cm · 80 cm · 75 cm. The flow properties of this

tank (without screens) are presented in Bellani et al.

(2012) and (with screens) in Bellani and Variano

(2012). The fluid-phase turbulence with screens (and

without particles) is described in Table 1. The introduc-

tion of particles reduces the turbulent kinetic energy, Ek;

spheres reduce Ek by 15%, and ellipsoids reduce Ek by

3% (Bellani et al. 2012). These data were obtained from

traditional (two-dimensional) particle image velocime-

try at the tank center. Isotropy of the flow was evident

when comparing the velocity fluctuation magnitudes

between the axial and vertical direction. Homogeneity

of turbulent statistics was observed in a region sur-

rounding the tank center. Defining the homogeneous

region as the region over which velocity statistics (vari-

ance, Reynolds stress, integral length scale, Taylor scale,

and dissipation rate) do not vary by more than 5%, we

found that this region extends beyond –1 integral length
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scale in the axial direction and beyond –2 integral

length scales in the vertical direction. By symmetry,

we assumed that the same isotropy and homogeneity

observed in the axial and vertical directions would be

found in the lateral direction. It is important for the

proposed experiments to have a large homogeneous

region, because particle rotation statistics are deter-

mined by the experiences of a particle over its recent

trajectory. By measuring the particle motion at the

center of a large homogeneous region, we ensured that

the flow experienced by particles during the time shortly

before they are measured is a single, well-quantified

flow. In other words, the particle statistics we report

should not contain a strong signature of flows different

from what was determined at the measurement location.

[11] We placed hydrogel spheres (diameter d ¼

8 mm) or ellipsoids (major axis le ¼ 16 mm, minor

axes de ¼ 8 mm) made of an agarose solution (4 g L-1)

Table 1 Turbulence statistics of fluid phase without particles in experimental facility, with 95% confidence intervals (CIs). Both lz and Lx were calculated from the
longitudinal autocovariance of fluid-phase velocity. The root mean square velocities (rms) are provided.

Turbulence statistic Definition (units) Measurement (95% CI)

Transverse velocity rms urms (m s-1) <0.012 (—)

Vertical velocity rms vrms (m s-1) 0.012 (0.012, 0.012)

Longitudinal velocity rms wrms (m s-1) 0.013 (0.013, 0.013)

Turbulent kinetic energy Ek ¼ 1
2

P3
1u

2
irms

� �� �
ðm2 s– 2Þ 2.3 · 10 -4 (2.3 · 10-4, 2.3 · 10 -4)

Taylor microscale lz (m) 8.3 · 10 -3 (6.2 · 10-3, 10 · 10-3)

Integral length scale Lx (m) 57 · 10 -3 (57 · 10 -3, 58 · 10 -3)

Eddy turnover time TLð¼ Lz=wrmsÞ ðsÞ 4.3 (4.3, 4.3)

Kinematic viscosity n (m 2 s-1) 1.0 · 10 -6 (—)

Reynolds number (Taylor) Relð¼ wrmslz=nÞ 110 (81, 140)

Reynolds number (integral) ReLð¼ wrmsLz=nÞ 760 (750, 760)

Turbulent dissipation rate 1 ¼ 15n w2
rms=l

2
z

� �� �
ðm2 s– 3Þ 3.8 · 10 -5 (1.9 · 10-5, 5.8 · 10 -5)

Kolmogorov length scale hð¼ ðn 3=1Þ1=4Þ ðmÞ 0.40 · 10 -3 (0.40 · 10 -3, 0.40 · 10-3)

Kolmogorov timescale thð¼ ðn=1Þ1=2ðsÞ 0.16 (0.16, 0.17)

Randomly-actuated
synthetic jet array

Screen to isolate
particles

Laser light sheet

Prism

x

y

zCamera (only lens
and CCD chip shown)

Symmetric setup

Fig. 1 Schematic of the stirred turbulence tank and stereoscopic imaging. The tank cross section is 80 cm · 80 cm, the screens are separated by 76 cm, and the jet arrays are
180 cm apart. Turbulence is generated by stochastically firing pumps according to the method developed in Variano and Cowen (2008). Axes indicate the laboratory coordinate
system, consistent with Bellani et al. (2012).
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into the stirred tank. The particles were near-neutrally

buoyant (density rp ¼ 1007 kg m-3) and thus remained

mostly suspended during experiments. The character-

istic time and length scales of the particle can be com-

pared with the corresponding scales for the fluid-phase

turbulence. The particle timescales (tp; computed in

Appendix A) were 3.64 s for spheres and 5.46 s for ellip-

soids, which are close to the turbulent eddy turnover

time (TL ¼ 4.3 s). The particle length scales were

8 mm for spheres and between 8 and 16 mm for ellip-

soids, which are close to the turbulent Taylor length

scale (lz ¼ 8.3 mm). The particles’ timescales corre-

spond to large turbulent scales, whereas the particles’

length scales correspond to small turbulent scales.

It was not clear a priori which of these scales would

dominate the dynamics, and thus experiments were

needed to understand whether particles’ timescale or

length scale is a better predictor of its rotational

statistics in turbulent flow.

[12] It is not trivial to define Reynolds numbers

(Rep) for large particles in a turbulent flow, as discussed

in Appendix B, as well as in Bellani and Variano (2012).

Appendix B shows that particles’ translational motion is

outside of the Stokes flow regime, and thus both gravi-

tational settling and turbulent diffusion are expected to

influence the transport. Gravitational effects are not

negligible for particles of this size, despite the fact

that their specific gravity (SG ¼ rp=rw ¼ 1:009, where

rw is the density of the fluid) implies near-neutral

buoyancy; this dynamic condition might extend to

biological particles.

[13] We used hydrogel because of two optical

properties: it is refractively matched to water and nearly

transparent, which allows passage of a laser light sheet

(Byron and Variano 2013). By doing this, we could

measure the solid body motion of the particles by imag-

ing embedded optical tracers. We did this via stereo-

scopic particle image velocimetry (SPIV), in which

two cameras and a laser light sheet are used to measure

three velocity components at a set of Eulerian locations

in a planar region (see Fig. 2). Using the SPIV system

(LaVision, Germany), we recorded velocity fields at a

data rate of 14.773 Hz. The spatial resolution was

1.38 mm, which was small enough compared with the

particle size that we could measure many velocity vec-

tors within each particle. We measured velocity vectors

inside the solid particles by tracking clusters of the em-

bedded tracers via standard SPIV.

[14] After collecting three-component velocity

measurements along a two-dimensional plane inside

each particle, we calculated the particle angular velocity

vector, V ¼ Wi ¼ ½Wx;Wy;Wz�, using the solid body

rotation equation

VL ¼ VM +V · RLM; ð3Þ

where VL is the velocity vector at any interior point L,

VM is the velocity vector at a second interior point M, V

is the rotation vector about the center of mass, and RLM
is the distance vector between points L and M. Because

we measured three components of velocity at each point

(e.g., VL ¼ ½VLx;VLy;VLz�) and all points were coplanar

(i.e., RLM ¼ ½RLMx;RLMy; 0�), this system of equations

was overdetermined in the z-coordinate and under-

determined in the x- and y-coordinates. By including

a third interior point (N), all components of V can be

determined. Eq. 3 can be rewritten twice, once in terms

of L and N and once in terms of M and N. Using Eq. 3

and the two other permutations, the complete angular

velocity vector V could be determined. This method

gives a single value for Wx, a single value for Wy, and

four estimates of Wz. We averaged the four estimates of

Wz, causing our final measurement of Wz to contain less

measurement noise than the other two components. An

ensemble of V values was determined, one from each

possible triplet of vectors VL, VN, and VM. The median
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Fig. 2 Stereoscopic particle image velocimetry data superimposed on the particle
image from which it was calculated. The dark region in the center is a view of the
particle interior, and vectors show the velocity of optical tracers within the particle.
Velocity component magnitude is represented by vector size (in x and y) and vector
color (in z). Solid body rotation is calculated from Eq. 3.

93 † Rotational diffusion of particles in turbulence † Meyer et al.

q 2013 by the Association for the Sciences of Limnology and Oceanography, Inc. / e-ISSN 2157-3689

Downloaded at UNIV CA- BERKELEY LIBRARY on September 3, 2013



of this ensemble (for each component) was used as the

best estimate of particle angular velocity.

[15] We measured V for a particle as it traveled

along its trajectory through the turbulent flow. The

trajectories we considered range in length from 8 to

119 SPIV time steps (0.5–8 s in duration). From these

we computed the autocovariance for each component

Wi(t). The autocovariance of a vector quantity is the

second-rank tensor of covariances formed from the

components of the vector. For the rotation vector

Wi(t), the symmetric autocovariance matrix is

RWaWb
ðtÞ ¼ kWaðt + tÞWbðtÞl; ð4Þ

where a and b subscripts do not imply summation, and

expectation value was estimated using an ensemble

average across all particle trajectories.

[16] We collected a number of trajectories suffi-

cient to calculate statistically converged values for the

first and second moments of the distribution of Wi; our

data showed convergence for the mean and variance of

Wi after 300 independent time series. We collected a

total of 407 ellipsoid trajectories and 572 sphere

trajectories. With these data, we computed a fourth

standardized moment (kurtosis) that converged for Wz

(the low-noise component) but not for the other two

components (Wx and Wy).

Monte Carlo Simulation

[17] Because our data were transformed several times

between the raw measurement (tracer locations in a

plane) and the final measurement (particle angular

velocity vector), it is nontrivial to use error propagation

to find the uncertainty (and possible biases) in our

measurements. Thus, we used a Monte Carlo simulation

to evaluate our measurements of the moments of V. We

constructed synthetic angular velocity trajectories using

an OU process (Gillespie 1996) and corresponding pla-

nar velocity vector fields of the type measured using

SPIV. Random noise that is normally distributed with

zero mean was added to these vector fields. Both the

noisy and noise-free simulated vector fields were passed

through the algorithm used to calculate V. By compar-

ing the results from the noise-free and noisy simulated

measurements, we assessed the effects of measurement

noise on the statistics of V.

Results

[18] Measured autocovariance curves for the spherical

and ellipsoidal particles are provided in Fig. 3, A and B,

where Eq. 2 is fitted to the data with free parameters a2
i

and TWi
, reported in Table 2. The characteristic time-

scale ðTWi
Þ of exponential decay found in these fits is

the Lagrangian integral timescale of particle rotation,

and ai is the noise-free standard deviation of particle

angular velocity.

[19] There is a considerable deviation between the

data and model at zero lag (t ¼ 0) in Figs. 3 and 4. We
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Fig. 3 Autocovariance tensor of particle rotation versus time lag of spherical (A)
and ellipsoidal (B) particles. Solid symbols are the diagonal terms of the autoco-
variance tensor. The error bars are standard error, and the solid line is the expo-
nential fit. Open symbols are the off-diagonal terms of the autocovariance tensor.
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attribute this to random noise in the measurement; if

this noise is uncorrelated with itself over time, then its

signature will be present only in the first point on each

curve. This appears to be the case in Figs. 3 and 4, where

the data and exponential curve fit agree well away from

t ¼ 0. As a result, the exponential fit parameter ai can

be interpreted as the noise-free variance.

[20] We approximated the magnitude of measure-

ment noise as the difference between the variance

measured as the second moment of the angular velocity

PDF s 2
i

� �
and the noise-free variance measured from

the exponential fit to autocovariance a2
i

� �
. From these

values we defined a signal-to-noise ratio (SNR) as

SNRi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 2
i

s 2
i - a 2

i

s
: ð5Þ

The SNR, measured variance, and noise-free variance

are reported in Table 3. The SNR is an essential input

to our Monte Carlo analysis; we set the simulated

measurement noise in the Monte Carlo simulation so

that its SNR matched our measurements. We then used

the Monte Carlo results to infer how measurement noise

affected the other statistics.

[21] The rotation statistics measured from the par-

ticles are provided in Table 3, along with corresponding

Monte Carlo results. Because of the isotropy of the

turbulence in the tank (see Table 1), the rotation of

the particles should also be isotropic. The fitted param-

eters on the exponential model (Table 2) indicate

that this is true, within measurement uncertainty. As

expected, the effect of measurement noise was greater

for rotation about the x- and y-axes than about the

z-axis because Wz is the overdetermined component

that contains more data. This anisotropic noise effect

can be seen in the Monte Carlo results (Table 3): when

statistically isotropic rotation was measured with our

anisotropic imaging routine, the resulting PDF had

anisotropic moments.

[22] Whereas noise-free variance can be calculated

as discussed above, no method is available for kurtosis

(G ; ka4l=ka2l2, where a is a stochastic variable). Thus,

we used the Monte Carlo analysis as a guide to under-

stand the kurtosis. The Monte Carlo results show that

our measurement method gives kurtosis values that are

strongly upward biased. Thus, a distribution of rotation

values that is truly Gaussian (G ¼ 3) will appear lepto-

kurtic (G.3, also known as super-Gaussian) in our

measurements. This bias is present in all coordinate

directions, though it is stronger in x and y than in z.

The biased measurements of kurtosis computed from

our experiments are shown in Table 3. Only the z-

component is statistically converged; thus, we do not

report confidence intervals for the others. The measured

values of Gz are close to the Monte Carlo predictions for

a biased measurement of a Gaussian distribution. In

fact, they are slightly smaller than these predictions.

We conclude from this that the true distribution of

angular velocities in our experiment is near Gaussian

and may even be slightly platykurtic (G,3, also

known as sub-Gaussian).

Table 2 Parameters and 95% confidence intervals (CIs) from the exponential fit to
angular velocity autocovariance: noise-free standard deviation (ai) and Lagrangian
integral timescale ðTWi

Þ.

Statistic Spheres (95% CI) Ellipsoids (95% CI)

ax (rad s-1) 0.43 (0.39, 0.47) 0.57 (0.54, 0.61)

ay (rad s-1) 0.50 (0.40, 0.60) 0.42 (0.39, 0.46)

az (rad s -1) 0.47 (0.44, 0.49) 0.39 (0.38, 0.41)

TWx
(s) 0.43 (0.29, 0.57) 0.37 (0.30, 0.43)

TWy
(s) 0.48 (0.15, 0.81) 0.37 (0.28, 0.45)

TWz
(s) 0.39 (0.33, 0.45) 0.52 (0.45, 0.59)
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Fig. 4 Autocovariance of particle rotation about the z-axis (Wz) for spheres (blue
triangles and solid line) and ellipsoids (red triangles and dashed line). Error bars are
standard error. Because of a large number of short trajectories, the fit was
performed using data for small lag time t.
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Discussion

[23] The hypothesis examined in this study is that the

rotation of large particles suspended in turbulence

satisfies an Ornstein–Uhlenbeck (OU) process. As men-

tioned in the introductory remarks, the three character-

istics of this stochastic process are exponentially decay-

ing autocovariance, Gaussian distribution, and

stationarity. Figs. 3 and 4 show that, other than the

noise at zero lag, the exponential decay model is quite

effective for particle rotation autocovariance. Based on

the discussion of kurtosis above, we conclude that the

distribution of angular velocities is likely close to Gauss-

ian. We can assume that the rotation process is station-

ary whenever the driving flow is stationary. With these

three observations as support, we conclude that the OU

process is an acceptable model for the Lagrangian angu-

lar velocity of large particles.

[24] We can use the OU process to determine the

time-dependent rotational eddy diffusivity of large par-

ticles in turbulent flow, KWi
ðtÞ. In analogy to Eq. 1, this is

KWi
ðtÞ ¼

ðt
0

RWi
ðtÞdt ¼ a2

i TWi
1 - e-t=TWi

� �
; ð6Þ

from Taylor (1922). This rotational diffusivity allows us

to calculate quantities of interest for aquatic organisms,

such as the characteristic time for fluid-driven stochastic

exploration of orientation space, and the rate at which

adjacent organisms lose their relative alignment. Align-

ment and rotation of organisms at this small scale also

impact larger-scale processes; for example, the magnitude

of an organism’s rotation affects its boundary layer thick-

ness and therefore nutrient uptake, influencing the

dynamics of entire communities (Prairie et al. 2012).

Fig. 5, A and B, shows the time-varying diffusivity

predicted in this way, using a2
i and TWi

from the expo-

nential fit to our autocovariance measurements (Table 2).

When the exponential term diminishes to a negligible

value, KWi
ðtÞ tends toward a constant value: the Fickian

asymptote. The value of the asymptote is calculated as

K̂Wi
¼ a2

i TWi
and is reported in Table 4.

[25] Our definition of V is the angular velocity

vector of a particle about its center of mass, with the

three rotation components referenced to a set of coor-

dinate axes that are fixed in the laboratory frame. It

would also be possible, though more complicated

experimentally, to describe rotation relative to a set of

coordinate axes that move with each particle. The two

definitions will likely not give identical results, and both

would be interesting to know. For example, when study-

ing organisms, the rotation relative to the local axes

Table 3 Moments of angular velocity probability density functions (PDFs) and their Monte Carlo simulation PDFs, with 95% confidence intervals (CIs). Here si is the standard
deviation of the PDF ofWi and Gi is the kurtosis of the PDF ofWi. The signal-to-noise ratio (SNR) is calculated by measuring the noise magnitude as the difference between
the directly measured standard deviation (si) and the noise-free standard deviation (ai) obtained from the exponential fit.

Stereoscopic particle image velocimetry (SPIV) Monte Carlo simulation

Statistic Spheres (95% CI) Ellipsoids (95% CI) Noise-free (95% CI) Noise included (95% CI)

SNRx 0.81 (0.72, 0.91) 1.0 (0.92, 1.1) — 0.85 (0.89, 0.95)

SNRy 0.88 (0.66, 1.1) 1.0 (0.92, 1.2) — 0.87 (0.90, 0.97)

SNRz 1.4 (1.2, 1.5) 1.1 (1.1, 1.2) — 1.3 (1.3, 1.4)

kWxl (rad s-1) -0.012 (-0.036, 0.010) -0.024 (-0.050, -0.00043) 0.033 (0.014, 0.052) 0.018 (-0.014, 0.047)

kWyl (rad s-1) -0.029 (-0.054, 0.0072) -0.052 (-0.077, -0.032) 0.033 (0.014, 0.052) 0.032 (0.0023, 0.061)

kWzl (rad s -1) 0.021 (0.0042, 0.036) 0.011 (-0.0041, 0.025) 0.033 (0.014, 0.052) 0.031 (0.0063, 0.058)

sx (rad s-1) 0.68 (0.66, 0.69) 0.80 (0.79, 0.82) 1.0 (0.99, 1.0) 1.5 (1.5, 1.5)

sy (rad s-1) 0.76 (0.73, 0.79) 0.59 (0.57, 0.61) 1.0 (0.99, 1.0) 1.5 (1.4, 1.5)

sz (rad s -1) 0.58 (0.56, 0.60) 0.52 (0.50, 0.53) 1.0 (0.99, 1.0) 1.3 (1.2, 1.3)

ax (rad s-1) 0.43 (0.39, 0.47) 0.57 (0.54, 0.61) 1.0 (0.99, 1.0) 0.97 (0.94, 1.0)

ay (rad s-1) 0.50 (0.40, 0.60) 0.42 (0.39, 0.46) 1.0 (0.99, 1.0) 0.98 (0.95, 1.0)

az (rad s -1) 0.47 (0.44, 0.49) 0.39 (0.38, 0.41) 1.0 (0.99, 1.0) 1.01 (0.99, 1.0)

Gx 2.7 (—) 2.7 (—) 3.0 (2.9, 3.0) 8.2 (7.3, 9.2)

Gy 5.1 (—) 2.9 (—) 3.0 (2.9, 3.0) 7.7 (6.8, 8.7)

Gz 5.7 (4.9, 6.7) 5.3 (4.8, 5.9) 3.0 (2.9, 3.0) 6.6 (6.0, 7.2)
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would directly influence locomotion, while the rotation

relative to the laboratory axes would be useful in deter-

mining the statistics of the organism’s sensory search of

three-dimensional space, alignment with other organ-

isms, or alignment with flow features (Berg 1983).

Here, we focus only on the rotation relative to the

fixed laboratory coordinates and evaluate this rotation

while following each particle on its translational random

walk. This is the exact meaning of our definition of

“Lagrangian angular velocity,” and we caution readers

to be aware of the other possible definition.

[26] Particle shape appears to have only a minor

effect on rotation statistics for the particles considered

here. The Lagrangian integral timescales of angular

velocity are statistically identical for ellipsoidal and

spherical particles (Tables 2 and 4). The variance of

angular velocity is also very similar between the two

particle shapes, though the statistics are not as conclu-

sive (one component is statistically identical between

the two shapes, another is larger for spheres than

ellipsoids, and the third is larger for ellipsoids than

spheres). Because we examine ensemble statistics

rather than individual particle paths (and because we

view rotational diffusion as a stochastic process), we

are not equipped to investigate specific particle

behaviors such as Jefferey (1922) orbits. Furthermore,

our particles are tumbling in a high Reynolds number

turbulent flow (out of the Stokes regime) and therefore

are not analogous to Jefferey’s (1922) theory, as pre-

viously stated. For the same reason, the model of a

sphere in creeping flow would not be appropriate here

(Kiørboe and Visser 1999; Catton et al. 2012).

[27] From our experiments, since particle shape

appears to have little influence on rotation statistics, we

conclude that particle rotation dynamics are dominated

by the large scales of fluid motion. This is consistent

with the results of Nguyen et al. (2011), who found

that the diatoms with spines all rotate with a statistically

identical period, regardless of the number of spines. In

our experiment, the ellipsoids and spheres will likely

interact with the fluid differently on small scales (i.e.,

the scale of particle diameter and Taylor length scale),

because of their shapes and related wake effects. How-

ever, these differences appear to be of minor importance

in determining the particle rotation. The large scales of

turbulent motion appear to have the largest effect on

particle rotation. From this conclusion, we can infer that

particles’ Stokesian relaxation timescale, the character-

istic response time delay for a particle in Stokes flow, is a

more appropriate predictor of dynamics than the par-

ticle size scale. The reasoning is as follows. The Stokesian

relaxation timescale of particles considered here is near-

ly equal to the eddy turnover time. This implies that

small-scale turbulent features will not persist long

enough to elicit a response from the particles, and
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Fig. 5 Time-dependent rotational diffusivity versus time lag for spherical (A) and
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removed from first point), the black solid line is Eq. 6, and the dotted line is the
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for the respective color symbol.
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thus only large-scale motions will matter in determining

particle dynamics.

[28] The idea that particle rotation is governed by

a relatively large timescale has many implications for

behavioral models of the larger plankton, such as the

prey-capture model for larval fish presented in MacKen-

zie et al. (1994). In these and similar cases (e.g., Dower

et al. 1997), the persistence timescale of rotation can be

compared with model parameters such as the minimum

pursuit time to determine if rotation should be included

in the model. Our observation of shape-independent

rotation suggests that this persistence timescale can be

estimated with the Stokes relaxation time and that this

approach is a more accurate predictor of particle dy-

namics than one based on length scales. Similar to our

results for rotation, dominance of large-scale fluid

motion in determining particle translation is discussed

in Komasawa et al. (1974). In contrast, the particle size

scale, being similar to the Taylor length scale, implies

that motions significantly smaller than the energy

containing scales could matter in determining particle

dynamics.

[29] The stochastic behavior of particle rotation

appears to be inherited directly from the large scales of

surrounding turbulence, and thus we expect that par-

ticle rotation will scale with the energy-containing

motions of turbulence. This conceptual model suggests

that angular velocity variance will scale with the turbu-

lent kinetic energy Ek, and scale inversely with the square

of the turbulent integral length scale L, as

a2
i , EkL

-2: ð7Þ

We also predict that the Lagrangian timescale of rotation

TWi
should follow the same scaling as the Lagrangian

timescale of translation TL; that is,

TWi
, TL , Ek1

-1; ð8Þ

where 1 is the turbulent kinetic energy dissipation rate

(Pope 2000). Together, these results suggest that the

rotational diffusivity K̂Wi
¼ a2

i TWi
will scale as K̂Wi

,
E2
kL

-21-1. Using the scaling relationship 1 , E
3=2
k L-1,

we can rewrite our result as

K̂Wi
, E

1=2
k L-1: ð9Þ

A heuristic description of this scaling can be made in

two parts. First, larger turbulent kinetic energy corre-

sponds to larger rotational diffusion. Second, at a fixed

turbulent kinetic energy, particles will undergo the most

rotational diffusion when the integral scale is as small as

possible. This makes sense because minimizing the inte-

gral scale at constant Ek maximizes fluid enstrophy. We

can write the scaling law as K̂Wi
¼ CE

1=2
k L-1 and use the

measurements in this study to approximate the constant

C < 0:5. This result should be used with caution

because the measurements from which C is approxi-

mated cover only one point in parameter space. Further-

more, these results should be applied only to particles

sharing dynamical properties similar to those con-

sidered here.

[30] For spherical and ellipsoidal particles suspen-

ded in homogeneous, isotropic turbulence, we have

shown that the particle angular velocity can be modeled

as an OU process. This conclusion follows from our

laboratory measurements showing that the Lagrangian

Table 4 Calculation of rotational diffusivity, K̂Wi
. Comparison of the laboratory measurements and Monte Carlo simulations shows that measurement noise has only a slight

effect on the calculation of the rotational diffusivity.

Stereoscopic particle image velocimetry (SPIV) Monte Carlo simulation

Statistic Spheres (95% CI) Ellipsoids (95% CI) Noise-free (95% CI) Noise included (95% CI)

ax (rad s-1) 0.43 (0.39, 0.47) 0.57 (0.54, 0.61) 1.0 (0.99, 1.0) 0.97 (0.94, 1.0)

ay (rad s-1) 0.50 (0.40, 0.60) 0.42 (0.39, 0.46) 1.0 (0.99, 1.0) 0.98 (0.95, 1.0)

az (rad s -1) 0.47 (0.44, 0.49) 0.39 (0.38, 0.41) 1.0 (0.99, 1.0) 1.01 (0.99, 1.0)

TWx
(s) 0.43 (0.29, 0.57) 0.37 (0.30, 0.43) 0.13 (0.13, 0.14) 0.13 (0.12, 0.14)

TWy
(s) 0.48 (0.15, 0.81) 0.37 (0.28, 0.45) 0.13 (0.13, 0.14) 0.13 (0.12, 0.14)

TWz
(s) 0.39 (0.33, 0.45) 0.52 (0.45, 0.59) 0.13 (0.13, 0.14) 0.13 (0.12, 0.14)

K̂Wx
(rad 2 s-1) 0.079 (0.048, 0.11) 0.12 (0.093, 0.15) 0.14 (0.13, 0.15) 0.12 (0.11, 0.13)

K̂Wy (rad 2 s-1) 0.12 (0.025, 0.21) 0.066 (0.048, 0.084) 0.14 (0.13, 0.15) 0.12 (0.11, 0.13)

K̂Wz
(rad 2 s-1) 0.086 (0.069, 0.10) 0.080 (0.068, 0.092) 0.14 (0.13, 0.15) 0.13 (0.12, 0.14)
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autocovariance of particles’ angular velocity decays

exponentially (Fig. 3). Our measurements also show

that the particle rotation PDF is close to Gaussian, a

conclusion that requires the use of a Monte Carlo

simulation to evaluate the propagation of measurement

noise through our analysis. Comparing particles of two

different shapes, we found that the greater eccentricity of

the ellipsoid does not strongly influence its rotational

diffusion. Both ellipsoids and spheres exhibit similar

integral timescales of rotation and angular velocity

variances, from which we infer that particle rotation is

governed by large turbulent scales.

Significance to Aquatic Environments

[31] Our results can be used to understand organisms

with physical characteristics similar to the particles

studied here, specifically organisms that are nonspheri-

cal, nearly neutrally buoyant, and within the size range

of the turbulent inertial subrange. Depending on the

organism and the ambient turbulence, these can include

copepods, diatom chains, and larvae. A good size match

for our particles is the larvae of most teleost fishes

(Osse et al. 1997). The distribution of linear and

angular velocities that these larvae experience is central

to their survival, affecting feeding, recruitment, and

predator avoidance (Grünbaum and Strathmann 2003;

Peng and Dabiri 2009).

[32] One application of our results is to quantify

how turbulent rotation dictates the timescales over

which an organism samples orientation space. Any sen-

sory organs that the organism uses must be swept across

space, unless they are omnidirectional. This sweeping

may be driven by organism locomotion only, by turbu-

lent rotational diffusion only, or by a combination of

both. For the flow-particle combination studied

here, particles exploring space by turbulent rotational

diffusion only will complete one entire rotation cycle

via diffusion in an average of roughly 6 min

ðT2p ¼ ð2pÞ2=K̂Wi
< 360 sÞ. A similar approach can be

used to quantify the breakdown of alignment within

groups of organisms. If we consider that mutual align-

ment is lost after the average individual diffusively

rotates over an angle of p/8, then for the particles

considered here, alignment is lost after 1.5 s.

[33] For particles of sizes different from those used

in the models here, approximate results for rotational

diffusivity can be obtained provided that the particles

are in the same dynamical regime as studied here. In this

regime, the relative motion between fluid and particle

is outside the creeping flow regime (Rep.1), the

Stokesian relaxation timescale is similar to the large

eddy turnover time, and the particle length scale is

within the inertial subrange. For such particles, our

analysis suggests that the rotational diffusivity scales

as K̂Wi
, E

1=2
k L-1.

[34] Our results show the timescales of rotation to

be comparable to the large timescales of the ambient

turbulence, which is significant because it gives some

predictive power. Knowledge of this “forgetting time-

scale” is crucial for the study of alignment in aquatic

organisms because it may impact such behaviors as

chain formation or schooling (Pahlow et al. 1997;

Grünbaum 1998). This result, as well as the others

presented herein, can be helpful in evaluating the

interplay between passive and active locomotion by

organisms. That is, it is an open question to what degree

an organism’s rotation is caused by its own actions

versus hydrodynamic forcing. Understanding this can

help shed light on rotation-governed behaviors such as

the run-and-tumble approach to chemotaxis (Adler and

Tso 1974; Tailleur and Cates 2008).

[35] Our results on shape are of value to research-

ers investigating how the shape of an organism affects its

interactions with its environment (Tytell et al. 2010;

Marcos et al. 2012; Peng and Alben 2012). The results

of this study indicate that in our size range, ellipsoid

eccentricity between 1 and 2 has no significant effect on

angular velocity variance or integral timescale. This

observation, plus our explanation for why this is the case,

can be useful for a subset of conditions found in nature.

[36] Microautonomous underwater vehicles

(mAUVs) may be used as part of future work to measure

and monitor aquatic environments. The results given

here can aid in the design of these vehicles. For example,

direction-finding is strongly dependent on orientation,

requiring complex control systems to maintain the orig-

inal heading of the vehicle (Cox and Wei 1995; Yun et al.

1999). Thus, being able to predict the influence of tur-
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bulent flow on mAUV rotation may streamline and sim-

plify such control systems.
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Appendix A

[A1] The Stokesian relaxation time can be used to

approximate the timescale with which particles will

respond to fluid motions in the turbulent field. This

scale is tp ; rpd
2
p=18rf n, which is derived using a sim-

pler flow than considered here. Specifically, this defi-

nition of tp is the exponential timescale with which

spherical particles in creeping flow approach their ter-

minal velocity in a uniform steady flow. Calculating this

timescale for the spheres, tp,s ¼ 3.64 s.

[A2] To estimate the response behavior of ellipsoids,

one can consider the average relaxation timescale of

randomly oriented ellipsoidal particles in creeping

flow. Zhang et al. (2001) derived this timescale in

terms of ellipsoid eccentricity l and the relaxation

time of a sphere whose diameter equals the ellipsoid’s

minor axis tp,q as

tp;e ¼ tp;q l
logðl +

ffiffiffiffiffiffiffiffiffiffiffiffi
l2 - 1

p
Þffiffiffiffiffiffiffiffiffiffiffiffi

l2 - 1
p : ðS1Þ

[A3] In our study, l ¼ 2, and the equivalent sphere

is equal to the sphere considered above ðtp;q ¼ tp;sÞ.

Thus, the ellipsoid relaxation timescale is

tp;e ¼ 1:5tp;s ¼ 5:46 s. It is worth emphasizing that the

particles in this study are likely not experiencing

creeping flow, and thus the timescales are not explicit

predictions but, rather, serve as scales to guide the

interpretation of results.

Appendix B

[B1] The traditional definition of particle Reynolds

number is Rep ; Wd=n, where d is particle diameter

and W is the relative velocity between the particle

center-of-mass velocity V and fluid velocity far from

the particle wake U. In a quiescent fluid, we use the

Clift and Gauvin (1970) expression for drag on a sphere

to predict a terminal velocity of 3.6 cm s-1 and corre-

sponding Rep ¼ 255 for spheres having specific gravity

of 1.009 and diameter of 8 mm. To the authors’ knowl-

edge, there is no drag model for prolate ellipsoids that

gives the expected settling velocity in quiescent fluid for

particles at a random orientation. However, most relat-

ed work suggests that the drag coefficient will be order 1,

and the relevant length scale will be between the major

and minor axis lengths. With these approximations, the

Reynolds number for the ellipsoids will be similar to

that found for spheres (Rep ¼ 255, shown above).

[B2] The above results may not accurately describe

the particle motion measured herein because the fluid

flow is far from quiescent. Turbulent fluctuating veloc-

ities in the fluid phase prevent a straightforward defi-

nition of the relative velocity W, for lack of a single

dynamically relevant velocity U. If an expectation veloc-

ity (kUl) is used to quantify the fluid phase, one obtains

an unsteady relative velocity W1 ; kUl - V, and by

taking the expectation value of W1, one obtains the sto-

chastically steady relative velocity W2 ; kUl - kVl.
There is no empirical model allowing the prediction of

kVl for either spheres or ellipsoids. But we estimate W2

roughly by equating the weight of a particle to an en-

semble average drag force FD ; 1
2rCDaW

2
2, where a is

the cross-sectional area. By assuming that the drag coef-

ficient is bounded by 0.1 and 10, this estimate suggests

that Rep is above 70 and below 7000, for both spheres

and ellipsoids.

[B3] When fluctuating velocities exceed expectation

velocities, then it may be more appropriate to define

particle Reynolds number from a fluctuating velocity.

A practical option is

W3 ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU - kUlÞ2

q
-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV - kVlÞ2

q
: ðS2Þ
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It is appealing to define W4 ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU - VÞ2

p
, but this

incurs the challenge of defining U, as discussed above.

Bellani and Variano (2012) measured W3 for the par-

ticles measured in this study, in a very similar turbulent

flow, and found that Rep was 46 for spheres and 79 for

ellipsoids.

[B4] With the above results, it is possible to conclude

that particle motions examined here respond both to

gravitational settling and to the drag response to turbu-

lent velocity fluctuations in the fluid phase. Further-

more, in both cases, particles move in such a manner

that the fluid-particle interaction is outside the regime

defined as creeping flow.
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Jenny, M., J. Dušek, and G. Bouchet. 2004. Instabilities and transition

of a sphere falling or ascending freely in a Newtonian

fluid. J. Fluid Mech. 508: 201–239. doi:10.1017

/S0022112004009164.

Kiørboe, T., and A. W. Visser. 1999. Predator and prey perception in

copepods due to hydromechanical signals. Mar. Ecol. Prog.

Ser. 179: 81–95. doi:10.3354/meps179081.

Koch, D. L., and E. S. G. Shaqfeh. 1989. The instability of a dispersion

of sedimenting spheroids. J. Fluid Mech. 209: 521–542.

doi:10.1017/S0022112089003204.

Komasawa, I., R. Kuboi, and T. Otake. 1974. Fluid and particle

motion in turbulent dispersion—I: Measurement of

turbulence of liquid by continual pursuit of tracer particle

motion. Chem. Eng. Sci. 29: 641–650. doi:10.1016/0009-

2509(74)80178-8.
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